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MOTION OF A CHARGED GAS FILLING A CYLINDRICAL CAVITY WITH A CROSS SECTION IN THE

FORM OF AN ARBITRARY ELLIPSE

V. A, Levin
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Consider the motion of a one-component charged gas in an exter-
nal magnetic field, this gas initially filling a cylindrical cavity and
having an elliptical cross section. The steady magnetic field lies
along the axis of the cylinder, while the induced magnetic field is
neglected, since the nonrelativistic case is envisaged, and the cur-
rents are small, The motion is essentially two-dimensional, i.e., is
dependent on the coordinates (x,y,t). The-solution cannot be found in
general form, but the investigation can be carried to completion in
one case of practical importance. We seek a solution describing the
uniform relative deformation of the gas in general form.

Such solutions have been derived in ordinary gasdynamics [1, 2],
in magnetohydrodynamics [3], and in gasdynamics in the presence
of a gravitational field [4].

The following system of equations describes the motion:

du q
m gz = qgrad ¢— —u X Hy,

an
FTies divau =0,

AQ = 2mngn, ¢))
in which m is the mass of a particle, q is charge, c is the velocity of
light, n is density, ¢ is the electrical potential, and Hy is the steady
magnetic field acting along the Oz-axis.

The gas has a constant density n, at t = 0 together with a velocity
distribution linear in the coordinates, while the cross section is de-
scribed by x%/at + yz/b2 = 1. This shape of cross section gives ¢ a
quadratic form, and this means that the dependence of the velocity on
the coordinates remains linear for t = 0, with the result that n is uni-
form over the ellipse at any given t, but the size of the ellipse changes,
as does its orientation in space.

We transform (1) by introducing the dimensionless variables

uw= Y 2nq2ng/mal, ¢ =

T

= —,
V 2ag? ng/m

In Lagrange variables (£g,m, T) we get

n = nolV 2ntgnea®D
0¥, g s
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Here ( )50»’70 means that the force is written in terms of & and 7.
We seek the solution in the form

£ = Eopur (T) 1 Motn (T), n== & Y2 (T) + Mo P2 (7). (4
The density N is given by
N7b=aps — b2 =D. ()
Consider how the cross section varies (Fig. 1). The equation of the
ellipseat 7= 0 is

E2 + B 2=1 B = bd/a)

The axes of the ellipse subsequently vary, as does the orientation,
The equation for any t relative to the original position of the axes is

(Bue — MY)? D72 4 B2 (qua—Ee)? D72 =1, (6)

The boundary remains elliptical, and the equation applicable in a
coordinate system linked to the principal axes is

£1%/a1? -+ M¥/hy? =

Herea; and b, are the semiaxes in the moving coordinate system,

which is turned through 6 relative to the initial system; a;, by, and 6

Fig. 1

are given by standard formulas in analytic geometry. The potential in
the moving coordinate system is

oV R 7112)

P05 oy T M

D (&, m, T) =

We substitute (7) into the equations of motion and use the formu-

" 1as for passing from the moving coordinate system to the fixed one to

get

abN T (1 1

M =g o H_}_El—/ T

L4

) (4y €05 20 - 1, sin 20):1 ,
. " a1bi N 1 1
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. d}blN 1 1
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v __ oV
ke T 2(m +b1)[¢2 \ap + b1 /

< } (u1 sin 26 — 4, cos 28) -] - ooy, (8)
The initial data are
RO =1, $,0)=0, p/(0)=a,
P/ =8 (=12).

The quantities a;, by, N, and 6 are expressed in the usual manner
in terms of [y, Hy ¥;, and Pg.

I Hy=0( =0)and ¢;(0) =0 at t =0, we can obtain the solution
in explicit form; here ¥ =y, =6 =0, while (8) gives
B oot .
T T T - T ®

The solution may be put as

pr= fuz + (@—Paa) T+ (1—F)>

z

_ S dz
T, Vi T Bep 4B (B
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2 = 2Bpe + (o — Bty) T+ (1 — B). (10)

The ratio of the semiaxes for the changing ellipse is

ay Bpg 4 (o — Botz)y T - (1 —B)
2= o : 1)

It follows from (10) that the ellipse, no matter what its initial
shape, becomes a circle (@¢/by > 1) as T > . Figures 2 and 3 show
the behavior of ay/byand oy = 0 and for several 8. The result may be
used to describe the behavior of a particle beam if it is reasonable to
assume planar sections; an elliptical beam thus tends to become cir-
cular as it propagates. System (8) has been integrated numerically
foro = 0 and oy =B4 = 0; Figs. 4-9 show the resulis for 8 = 10 and
various 0. The ratio of the semiaxes becomes periodic when o # 0,
as do the semiaxes themselves; but the precise character of the oscilla~
tions is very much dependent on o, the amplitude and period being in«
versely related to 0. The orientation of the principal axes also changes,

being rotated through € relative to the fixed system, as shown in Fig. 9.
This implies that the beam has a periodic structure, with the prin-
cipal axes rotating along the beam.
We are indebted to B. V. Kudashkin for performing the caiculations.
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